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ABSTRACT: Single-layer graphene exhibits exceptional mechanical
properties attractive for optomechanics: it combines low mass
density, large tensile modulus, and low bending stiffness. However,
at visible wavelengths, graphene absorbs weakly and reflects even
less, thereby is inadequate to generate large optical forces needed in
optomechanics. Here, we numerically show that a single-layer
graphene sheet is sufficient to produce strong optical forces under
terahertz or infrared illumination. For a system as simple as
graphene suspended atop a uniform substrate, high reflectivity from
the substrate is crucial in creating a standing-wave pattern, leading to
a strong optical force on graphene. This force is readily tunable in
amplitude and direction by adjusting the suspension height. In particular, repellent optical forces can levitate graphene to a series
of stable equilibrium heights above the substrate. One of the key parameters to maximize the optical force is the excitation
frequency: peak forces are found near the scattering frequency of free carriers in graphene. With a dynamically controllable Fermi
level, graphene opens up new possibilities of tunable nanoscale optomechanical devices.
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Graphene interacts with light in unusual ways: while it is
virtually invisible to light polarized normal to its surface,

it interacts strongly with THz and mid-infrared light polarized
parallel to its surface, even though it is only a monolayer of
atoms.1−9 This interaction is highly frequency-dependent due
to the interband and intraband transitions of the free carriers in
graphene.2,10−12 The collective oscillations of these free carriers
can produce nanoscale plasmons, enabling the confinement of
light to dimensions much smaller than the light wave-
length.13−17 Meanwhile, graphene possesses several attractive
mechanical properties:18 as a single atomic layer, graphene has
very low mass density; while a free flake of graphene can be
easily bent,19,20 it has an exceptionally stiff in-plane Young’s
modulus, ∼1 TPa.21 On the surface with another material, it
behaves like a fluidic interface and readily conforms, due to a
remarkably strong adhesion with large van der Waals forces on
the order of 1 GPa.22,23

Exploiting these unusual optical and mechanical properties
together, one can envision intriguing uses of graphene in
optomechanics. In recent years, many 3D micro- and
nanostructures haven been explored in tailoring and enhancing
optical forces in a wide range of applications, including reduced
Brownian motion of atoms and resonators through optical
cooling,24−28 tunable integrated optics,29−33 enhanced non-
linear parametric processes,34,35 and stimulated phonon
generation.36 Moving from 3D thin-film structures toward a
2D graphene sheet further reduces the mass density to the
extreme and can translate into larger optomechanical coupling

and accelerations, resulting in better performance and lower
power consumption. Using optical forces to mechanically
actuate graphene is also practically attractive: compared to
photothermal and electrostatic transductions,18 direct actuation
by optical forces provides a unique combination of capabilities
including ultrafast modulation speed (GHz and beyond), high
spatial resolution, and all-optical reconfigurability through
spatially interfering multiple incident beams.
However, using graphene as an optomechanical material may

not be entirely intuitive, and one needs to identify conditions
that allow strong optical forces on graphene to emerge.
Considering the widely known low reflectivity (∼0.01%) and
low absorption (∼2%) of graphene37 at visible wavelengths,
one would expect very weak optical forces from both
absorption and scattering. The scattering becomes significant
when we shift our attention to THz and infrared frequencies
(0.1−300 THz), although the strength of scattering is highly
frequency-dependent and competes with substantial absorp-
tion. It is therefore instructive to explore this large spectral
range in its entirety and identify regimes dictated by different
material properties. Generally, one can optically excite graphene
either through far-field illumination38 or through near-field
approaches.4,13,14,39−41 In particular, near-field excitation allows
one to access graphene plasmons with nanoscale confinement
and strong field enhancement. However, graphene plasmons
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are also associated with practical challenges, including high
propagation losses and demanding coupling mechanisms. In
this paper, we instead focus on a simple system consisting of a
single-layer graphene sheet suspended above a substrate and
illuminated by far-field plane waves (Figure 1). The optical

forces can still be enhanced to large amplitudes, thanks to
Fabry−Perot resonances formed between the graphene sheet
and the substrate. Despite its seeming simplicity, such a system
exhibits rich optomechanical behaviors ranging from widely
tunable optical forces in both amplitude and direction
(attractive/repellent) to all-optical levitation and precise
positioning of the graphene layer. A key question we address
here is how one can accomplish large optical forces in this
simple system,42 given the control on the illumination
condition and the dielectric environment.
The Article is structured as follows. We first use perturbation

theory to decompose optical forces on graphene in near- and
mid-infrared ranges by their physical origin: ohmic loss and
kinetic inductance. We then expand our investigation to the
entire THz and infrared range, in which graphene can
significantly alter its surrounding fields. We study in detail at
cryogenic temperatures the effects of excitation frequency,
suspension height, and substrate permittivity. Four distinct
types of substrates are considered: high-index dielectrics,
metals, highly doped semiconductors, and free space (free-

standing graphene). We then extend our consideration to
graphene at room temperature.

■ PERTURBATIVE TREATMENT USING THE
COULOMB−LORENTZ FORCE LAW

We begin with the near-infrared spectral range, in which
graphene is a weak perturbation to its surrounding fields, and
apply the law of the Coulomb−Lorentz force to reveal the
major underlying sources of optical forces. Although optical
forces can be exactly evaluated from the Maxwell stress tensor
(see Supporting Information S1 for the closed form
formulation), the knowledge of the main contributors to the
optical forces is a significant insight that will be later extended
to the more general nonperturbative regime.
In classical electromagnetics, graphene can be generally

viewed as an infinitesimally thin filmthough it is capable of
producing significant perturbationwith a complex-valued
surface conductivity. Optical force on graphene is simply the
electromagnetic force exerted on the surface currents and
surface charges carried by this thin film. However, using the
Coulomb−Lorentz force law to evaluate the force is only
accurate when graphene weakly perturbs the system, because a
graphene sheet in any optical system introduces discontinuities
to the electromagnetic fields surrounding it and renders the
field terms in the Coulomb−Lorentz force ill-defined (Figure
1b). The boundary condition for the tangential magnetic field z ̂
× (H∥

(1) − H∥
(2)) = σE∥ exemplifies such a discontinuity. Here,

E∥ and H∥ are the tangential (to the graphene surface)
component of the electric and magnetic fields, respectively, and
σ is the surface conductivity of graphene. The difference
between H∥

(1) and H∥
(2) is inconsequential only when the surface

conductivity σ is much smaller than the characteristic
admittance43−45 of the surrounding medium Y1 (see Supporting
Information S1 and S2). For graphene, this condition is
satisfied in near-infrared and visible wavelengths (see
Supporting Information S3). Here, the number in the
subscripts and superscripts labels the media according to
Figure 1.
When graphene’s surface conductivity is small, from the

Coulomb−Lorentz force we show that the optical force, in a
general 1D system, is simply given by the admittance of the
wave in the absence of graphene (see the Methods section):
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Here, E∥,inc is the tangential component of the incident
electric field, E∥(h) is the tangential component of the electric
field in the absence of graphene, calculated at the graphene
position, and FPEC is the force exerted on a perfect mirror by
the same plane wave (used for normalization). The wave
admittance Ywave(h) is defined as the ratio of the tangential
magnetic field over the tangential electric field,46 z ̂ × H∥ =
Ywave(h)E∥, before introducing graphene to the system. Note
that the wave admittance includes the effect of the substrate
and is generally a space-variant complex value (see Supporting
Information S2). Since the graphene sheet has only one degree
of freedom h in this 1D optical system, only the z-component
of the optical forces is of interest.
In the particular case of a graphene suspended on a substrate

with a complex-valued reflectivity r = |r| exp(iϕr) that

Figure 1. (a) Schematic of a one-dimensional optomechanical system
with a graphene layer suspended in air (ϵ1 = ϵ2 = 1) at a distance h
from a substrate (partial mirror) with a relative permittivity of ϵ3. The
direction of propagation is shown by the arrows. J is the induced
surface current. (b) Side view of the system, highlighting the field
discontinuity and the circulating power between graphene and the
substrate.
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represents the wave admittance given in Supporting Informa-
tion S2, the optical force, to the first order in σ/Y1, is given by
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where kz
(1) is the z component of the wavenumber in a vacuum.

Equation 2 reveals that the optical forces on graphene have
two distinct origins. The first term is related to the optical
absorption of graphene and is proportional to the real part of
the surface conductivity Re{σ}, i.e., the ohmic loss. This
absorption force (Fabsorption) dominates when r vanishes, as in
the case of a freestanding graphene. On the other hand, the
second term stems from optical scattering of graphene and is
associated with the imaginary part of the surface conductance,
Im{σ}, i.e., the kinetic inductance. Note that the kinetic
inductance (Im{σ}), unlike the always-positive ohmic loss, can
change sign depending on the frequency (see Supporting
Information S3). This term dominates in systems with highly
reflective substrates, for example, a perfect electrical conductor
(PEC). In the latter case, r → −1 and the wave admittance in
eq 1 is purely imaginary. A main difference that sets the
scattering force apart from the absorption force is that the
scattering force, Fscattering(h), oscillates periodically between
positive and negative values with respect to the height h.
In the general case of a partially reflective substrate, both

absorption and scattering forces contribute to the total force.
The absorption (loss) leads to a constant downward pushing
force, while the scattering force enables a tuning range in which
the total optical forces can be adjusted by changing the height
of graphene from the substrate. The extent of the tuning is
determined jointly by the reflectivity of the substrate and the
kinetic inductance of graphene (the imaginary part of the
graphene surface conductivity). Large values of both |r| and

Im{σ} are necessary to support upward pulling forces on
graphene, i.e., the pulling scattering force to overcome the
always-pushing absorption force at certain h values. For a
nondispersive (in the frequency range of interest) substrate, i.e.,
constant r, the tuning range maximizes when the kinetic
inductance (Im{σ}) reaches its peak. This frequency
corresponds to the free-carrier scattering rate in graphene
(see Supporting Information S3). Equation 2 also reveals the
height of graphene at which the overall force reaches its
maximum or minimum, a quantity affected by the wavelength
of the incident light and the phase of the reflectivity of the
substrate ϕr.

■ OPTICAL FORCES UNDER STRONG
PERTURBATION

Below 20 THz, graphene alters the surrounding fields much
more significantly with stronger absorption and scattering,
resulting in larger optical forces. Although the perturbative
treatment discussed above is no longer accurate, the insight we
developed above still applies: optical forces on graphene are the
sum of a height-independent term (Fabsorption) and a height-
dependent term (Fscattering(h)), which are related to the
traveling waves and the standing waves in the system,
respectively. Therefore, in this section we investigate the
overall evolution of optical forces on graphene through a wider
spectral range from 0.1 to 300 THz.
In general, both traveling waves and standing waves exist in

this optomechanical system (Figure 1), as the graphene sheet
and the substrate serve as the two partial mirrors of an
asymmetric Fabry−Perot microcavity. A traveling wave is
associated with the total transmission and has a constant
strength throughout. The standing waves, in contrast, exist only
above the substrate and are of different strengths above and
below graphene. Because the frequency and the quality factor of
the asymmetric Fabry−Perot resonance depend on three

Figure 2. Normal-incidence optical forces on graphene suspended 200 nm above various substrates. (a) Schematics of the systems: (top) graphene
above a substrate with permittivity ϵ3; (middle) free-standing graphene; and (bottom) a perfect mirror as a force reference. (b) Optical force on
graphene in THz and far-IR regime and (c) optical forces in the perturbative mid-IR regime. The exact results (solid curves) agree with the
perturbative first-order approximation (dashed curves) qualitatively at low frequencies and quantitatively at high frequencies. (d) Enhancement of
optical forces: graphene on a substrate vs free-standing graphene. (e) Effect of the Fermi levels on the optical forces with a substrate permittivity of
12. In all panels except for panel e, the Fermi level is at 0.45 eV. In all the panels, the graphene scattering rate Γ is chosen to be 3 THz and the
temperature is assumed to be 4 K.
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parametersthe suspension height, the reflectivity of the
graphene (as a function of the optical frequency), and the
reflectivity of the substrate (as a function of its permittivity)
we next systematically study their effects.

■ FIXED SUSPENSION HEIGHT AND VARIED
SUBSTRATE PERMITTIVITY

We choose a fixed separation h of 200 nm and vary the
substrate permittivity from 1 to 100 to illustrate the transition
from predominantly traveling-wave environments to predom-
inantly standing-wave environments. This level of separation
has been used in experiments42,47 that measure the mechanical
resonance of graphene membranes. For a purely standing-wave
environment (substrate made of ϵ3 = −∞, perfect electrical
conductor), the exact solutions (solid curves) from the Maxwell
stress tensor agree well with the first-order perturbation results
(dashed curves) obtained via eq 2, as shown in Figure 2b and c.
Above 20 THz, as predicted by the first-order perturbation
theory (eq 2), optical forces follow the variation of ohmic loss
for low-index substrates (poorly reflective), while the kinetic
inductance dictates the optical forces when high-index
substrates (highly reflective) are used. For example, the optical
forces spectrum (red) without a substrate (ϵ3 = 1) closely
resembles the real part of the graphene conductivity (Figure S2
of the Supporting Information), with a step increase at 2EF and
a monotonic increase with decreasing frequencies. As the
permittivity of the substrate rises, reflection and the associated
standing-wave components become more significant in the total
optical forces. Thus, the sign change in the imaginary part of
graphene conductivity drives a similar sign change in the optical
forces, from a pushing force to a pulling force at 182 THz. This
transition is most pronounced in the case of a PEC substrate,
where the optical forces (the black curve in Figure 2b and c)
strongly resemble the imaginary part of the conductivity
(Figure S2).
In comparison to the high-frequency perturbative regime

(Figure 2c), the low-frequency regime (Figure 2b) yields much
larger forces. The optical forces plateau below 1 THz, following
the plateaus of the reflection and absorption (Figure S2c).
Under such fixed separation, the maximum force occurs
without a substrate, i.e., ϵ3 = 1. The amplitude of the force
(∼33% of FPEC) agrees well with the ∼46% power absorption
and ∼10% reflection (Figure S2), suggesting that the
optomechanical response of graphene to plane-wave incidence
at microwave frequencies is dominated by the absorption of the
momentum of the incident photons, with a smaller
contribution from reflection. In contrast, for highly reflective
substrates, as the frequency falls, the fixed 200 nm separation is
much smaller than the free-space wavelength, and the graphene
sheet is located closer to a nodal plane of the E fields. The
amplitude of the tangential electric fields near graphene
vanishes, and the induced current on graphene and the
resultant optical forces also vanish. To get a large optical force,
one needs to lift graphene away from the substrate to a height
of h ≈ π/4kz

(1).
Higher reflectivity from the substrates generally translates to

a larger optical force (Figure 2d) in the perturbative regime
above 20 THz. This enhancement of more than an order of
magnitude is due to a low-Q Gires−Tournois etalon48−50

(asymmetric Fabry−Perot resonator) formed between the
highly reflective substrate and the weakly reflective graphene
“mirror”. This enhancement is also robust over a range of
doping levels (EF ≈ 0.2−0.45 eV), as shown in Figure 2e.

However, the absolute magnitude of the optical forces in this
frequency range is small, far below the maximum possible
values we will discuss in the next section.
With such a subwavelength separation, pulling (repulsive)

forces that elevate graphene away from the substrate can be
found in a narrow frequency range around 200 THz, right
below the onset of the interband transition (Figure 2d). In this
frequency range, the graphene kinetic inductance is positive,
and graphene behaves as an anisotropic dielectric surface (see
Figure S2). Being proportional to the kinetic inductance, the
optical force has the opposite sign to that in the low-frequency
regime and pulls the graphene toward the incident fields. This
pulling force agrees with the fact that high-index dielectric
generally moves toward the maxima of the electric field, one of
which is located approximately quarter wavelength above a
high-index substrate. Therefore, the elevating force occurs
when graphene is placed close to the surface of such a substrate,
satisfying h < π/2kz

(1) or h < λ/4 at normal incidence.

■ VARIED SUSPENSION HEIGHT WITH A SILICON
SUBSTRATE

With a highly reflective substrate, the scattering force becomes
dominant. Using a silicon substrate (ϵ3 = 12) as an example, we
calculate optical forces on a graphene layer (EF = 0.45 eV) with
the separation h adjusted between 0 and 1.5 μm and the
frequency varied between 0.1 and 300 THz (Figure 3). All the
calculations are performed using the Maxwell stress tensor. The
graphene layer and the underlying substrate act as two partial
mirrors, forming a low-finesse asymmetric Fabry−Perot cavity,
and the total force becomes periodic with respect to the
separation h. The constant-force contours (Figure 3a) follow
the general trend of ν ∝ 1/h, with minor modifications from
the dispersive surface conductivity (see Supporting Information
S3). The zeros of the force (dashed lines in Figure 3a) occur at
h values that satisfy the relation 2hk0 = mπ. The optical force at
those separations vanish because the tangential electric field ∝
sin(hkz

(1)) vanishes for even values of m, or the tangential
magnetic field ∝ cos(hkz

(1)) vanishes for odd values of m. In
general, illuminating this asymmetric Fabry−Perot cavity at an
off-resonance frequency ω induces an optical force on the
graphene.
The separation leading to zero optical forces is either a stable

or unstable equilibrium position, depending on the sign of the
force gradient. The highly dispersive nature of graphene
conductivity creates three separate frequency regimes (Figure
3a). Above the onset of the interband transitions (hν = 2EF),
the optical absorption dominates, and the total force is a small
downward pushing force regardless of height with fluctuating
amplitude, with no equilibrium height. In the spectral range
(shaded regions in Figure S2) between the onset of the
interband transitions and the frequency of zero kinetic
inductance Im{σ} (the horizontal dotted line in Figure 3a),
graphene acts as a dielectric surface, and the stable heights
occur at odd values of m. Further lowering the frequency,
graphene acts as a plasmonic surface (Im{σ} < 0), and the
stable equilibrium positions shift to even values of m. Although
this regime provides the largest optical forces and the most
stable equilibrium among all three regimes, the associated stable
height is at least 700 nm above the substrate, suggesting a
challenge of large dc voltage required in electrostatic doping.
The locations of a stable equilibrium are consistent with the
fact that in a standing-wave system a plasmonic sheet is stable
at the zeros of the electric field and the maxima of the magnetic
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field, while a dielectric film prefers to be located at the maxima
of the electric field and zeros of the magnetic field. An incoming
power of 6.8 μW at the frequency ν = 3 THz (which
corresponds to the maximal forces) creates a 1 eV deep
potential well (assuming graphene is doped to EF = 0.45 eV).
One can find the maximum of the optical spring constant, at

the locations of such stable equilibrium. The optical spring
constant is an important metric in optomechanics to compare
the stability of an optical trap. In the high-frequency
perturbative regime, it is given by ▽hFz

[1] = 2kz
(1)FPEC|r|

Im{σ}cos(2hkz
(1) − ϕr)/Y1. This quantity is crucial in a range of

applications, such as ground-state cooling.42,51,52 The optical
spring constant reaches its maximum of 2kz

(1)FPEC|r|Im{σ}/Y1 at
the center of the optical potential well. In comparison to other
high-Q optomechanical systems,53−55 the optical spring

constant of graphene appears small. However, considering the
low mass density, the resulting acceleration can be significant;
at an intensity of 1 mW/μm2, a graphene sheet can experience
an acceleration on the order of 2.56 × 106 m·s−2, about 1716
times the acceleration experienced by a 100 nm thick silicon
nitride film in a comparable system. This large optical
acceleration may be exploited in structures with low in-plane
stress.
Elevating the operational temperature of graphene to room

temperature has little impact on the strength and the direction
of the optical force in systems associated with large forces
(Supporting Information S3). Thermal agitation of the free
carriers in graphene modifies its surface conductivity (see
Figure S3), mostly in the high-frequency regime near the onset
of the interband transitions. The real part of the conductivity is
affected more than the imaginary part, and thus the absorption
forces change the most. Such temperature dependency is
pronounced in systems with low-index substrates. Figure 3b
and c show that at room temperature optical forces in the
terahertz region remain essentially unchanged. The affected
spectral range around the interband transition frequency
produces optical forces less than 1% of the maximum optical
forces observed around a few THz and is practically unsuited
for optomechanics even at cryogenic temperatures.

■ TUNING RANGE OF OPTICAL FORCES FOR
VARIOUS SUBSTRATES

Since optical forces on graphene are periodic with respect to
height h, we summarized the range of optical forces (Figure
4a,b,e,f) from 0.1 to 300 THz for a range of substrates: low-
index dielectric substrates (ϵ3 = 1 or 2.25), high-index (silicon)
substrates, and several common plasmonic substrates (ϵ3 < 0).
The maximum possible pulling forces (dashed curves) and
pushing forces (solid curves) form a tunable range (the shaded
region in Figure 4). The tuning range is determined jointly by
the reflectivity of the substrate and the kinetic inductance of
graphene. The largest range occurs at the frequency near the
carrier scattering rate of graphene and when one uses highly
reflective (high-index or metallic) substrates. We found that the
presence of losses and dispersion in metals (Figure 4d) barely
modifies this tuning range (Figure 4a). However, this range
diminishes with low-index substrates or at the high-frequency
limit. The midpoint of this range is largely determined by the
optical absorption of graphene and follows the spectral features
of the real part of the graphene surface conductivity (Figure
S2). Thus, for low-index substrates (the blue curve in Figure
4a), optical forces peak at dc frequency, because Re{σ(ω)}
reaches a maximum. In contrast, for highly reflective substrates,
both the pushing and the pulling forces peak at the free-carrier
scattering rate of graphene, where Im{σ(ω)} reaches a
maximum. Generally, a reflective substrate enhances the optical
force with respect to that on a freestanding graphene (Figures
4b,f).
Both the operational frequency and the substrate permittivity

also influence strongly the separation heights at which the force
maxima and minima are located. In the perturbative regime,
peak forces are found where the electric and magnetic fields are
equal in magnitude and 90 degrees out of phase. For dielectric
substrates and plasmonic substrates away from their plasmon
frequencies, this condition is satisfied in eq 2 when h is a
solution of sin(2hk0) = ±1. For graphene in the plasmonic
regime (Im{σ} < 0), the maximum pushing force is found at
the separation hmax = λ/8 (i.e., sin(2hk0) = +1) and the

Figure 3. (a, b) Optical forces (normalized to FPEC, twice the
incoming photon momentum flux) on graphene at normal incidence
as a function of frequency ν and the separation h from a silicon
substrate with ϵ3= 12 at various temperatures: (a) T = 4 K and (b) T =
300 K. (c) Maximum (by adjusting the suspension height) optical
force as a function of temperature and frequency. Graphene
parameters are assumed to be EF = 0.45 eV, and Γ = 3 THz.
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maximum pulling force is found at hmin = 3λ/8 (i.e., sin(2hk0) =
−1). Since the absorption force dominates at low frequencies
and is always pointing downward, we instead use the term
“minimum force” (Fmin) for the lower bound of the range for
generality. For graphene in the dielectric regime (Im{σ} > 0),
the exact opposite occurs: hmax = λ/8 and hmin = λ/8 (Figure
4c). This reversal near 180 THz is accompanied by vanishing
Fmax and Fmin observed in Figures 4b and 4f. In the strong
perturbation limit of 20 THz and below, we also need to take
into account the finite phase shift from the reflection of a lossy
substrate. Thus, the separations associated with the maximum/
minimum forces are frequency dependent (see Figure 4c). The
change in separation due to the reflectivity phase different from
π can be seen from eq 2 as hmax = (3/8 + ϕr/4π)λ in the
plasmonic regime and hmax = (5/8 + ϕr/4π)λ in the dielectric
regime. This change is particularly pronounced at high
frequencies when the real part and the imaginary part of the
substrate permittivity are comparable at near-infrared frequen-
cies for metal (compare the orange and black curves in Figure
4c). In the nonperturbative regime (ν < 10 THz), graphene
surface conductivity becomes predominantly real-valued (see
Figure S2), shifting the maximum force gradually to hmax = λ/4
and the minimum force gradually to hmin = λ/2.
A silicon substrate, commonly used for electrostatic gating,

requires particular care in treating the optical forces, because its
reflectivity can vary strongly. Silicon possesses a plasmon
frequency inside the mid- and far-infrared frequencies,
depending on its doping level. The corresponding optical
forces are plotted in Figure 4e,f. The doped silicon is modeled
using a Drude-like permittivity:56,57 ϵSi(ω)/ϵ0 = 3.4152 − ωp

2/
[ω(ω −iΓ)], where ωp = (ne2/(m*ϵ0))

1/2 is the plasma
frequency. Γ = e/(m*μ) is the scattering rate, and μ is the

electron mobility, a function of the doping level n.58 The
effective electron mass m* is assumed to be 0.26 that of the
electron mass m0. As a reference, we also plot the case for
intrinsic silicon (black curve). Figure 4e,f suggest that higher
doping levels lead to higher reflectivity, thereby increasing the
tunable range of the optical forces on graphene. When the
doping level reaches 1019 cm−3, the optical force spectrum
resembles that obtained from a metallic substrate (see Figure
4a). The separation associated with the maximum and
minimum forces also depends on the doping level (Figure
4g). It is noteworthy that the separation for the maximum force
reduces to a level (∼0.08λ) much smaller than that of other
highly reflective substrates near the transparency threshold of
silicon (ϵSi(ω) ≈ 0), since there the phase of the reflectivity
abruptly changes.
Extending from the normal incidence illumination to the

more general oblique incidence, the analytical results derived
above still apply. For oblique incidences, one needs to consider
three major differences: The equilibrium spacing, shown in
Figure 3, becomes larger and inversely proportional to the
cosine of the incident angle, since kz is reduced in eq 2 for an
oblique incidence. The absolute value of the normal force Fz
decreases with an increasing incidence angle, similar to the
decreased force experienced by a perfect mirror: FPEC = 2P/c
cos2 θ, where P is the incoming power (irradiance) and θ is the
incidence angle. Additionally, an in-plane optical force is
exerted on the graphene, caused by the in-plane momentum of
the photons lost in optical absorption.
In summary, we investigated conditions to create large

optical forces on single-layer graphene suspended above a
reflective substrate at THz and infrared wavelengths. Large
optical forces require the frequency of the illumination to be

Figure 4. (a, b, e, f) Maximum (solid lines) and minimum (dashed lines) optical forces on suspended graphene (EF = 0.45 eV) for various substrate
materials (shown in the legend to the left of the panels), normalized by the forces on a PEC mirror (panels a and e) and by the forces on free-
standing graphene (panels b and f). (c, g) Graphene−substrate separation where Fmax and Fmin are found. (d, h) Permittivity of the substrates. The
plasma frequencies and carrier scattering rates in silicon [in units of THz] for various doping levels n are (n = 1017 cm−3, ωp = 5.57, Γ = 1.50), (n =
1018 cm−3, ωp = 17.62, Γ = 3.88), and (n = 1019 cm−3, ωp = 55.72, Γ = 9.37).
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near the free-carrier-scattering rate of graphene, and the peak
force is comparable to 40% of the scattering force experienced
by a perfect mirror. The overall optical force consists of two
main components: an absorption force largely determined by
the real part of the surface conductivity of graphene and a
scattering force largely determined by the kinetic inductance
(the imaginary part of the surface conductivity). The
absorption force is independent of the separation height,
whereas the scattering force changes both its direction and
amplitude as a periodic function of the separation, thanks to a
low-Q Fabry−Perot etalon formed between the graphene
“mirror” and the substrate. The absorption force dominates
with a weakly reflective substrate, while the tunable scattering
force dominates when a highly reflective substrate is used. In
the spectral range associated with moderate to large optical
forces (0.1−100 THz), temperature effects are largely
negligible. For graphene, the large tuning range of the scattering
force and the possibility of optical levitation enable a variety of
optomechanical applications.

■ METHODS

In high frequencies, graphene behaves as a small perturbation
and the discontinuities in the fields z ̂ × (H∥

(1) −H∥
(2)) = σE∥

diminish. The fraction of the surface conductivity to the
characteristic wave admittance of the medium measures such
smallness. When this ratio is small, the fields can be expanded
in terms of the perturbation ratio σ/Y1:

σ σ= + + = + +
Y Y

E E E H H H..., ...[0]

1

[1] [0]

1

[1]

E[0] and H[0] are the fields in the absence of graphene (σ = 0),
and numbers in brackets “[]” refer to the order of the
expansion. To the first order, the optical force can be integrated
from the Coulomb−Lorentz force density over the entire
graphene surface S:

∫ ρ μ= + × * · ̂*E daF J H z
1
2

Re{ [ ( ) ] }z
S

z
[1] [1] [0]

0
[1] [0]

ρ denotes the surface charge density, and J denotes surface
current density in graphene. Both vanish at the zeroth order,
e.g., J[0] = 0. Using the force exerted on a perfect mirror by the
same plane wave FPEC, we normalize such an optical force to the
incident power as

= −
× * + × · ̂

| |

∗

||
F F

Y E

J H J H z( )

4z
[1]

PEC

[1] [0] [1] [0]

1
2

,inc
2

Here, E∥,inc is the amplitude of the tangential component of the
incident electric field. Note that the unperturbed fields are
continuous, inducing a surface current J[1] = σE∥

[0].
To track down the main contributing factors to the optical

force, we further express the tangential magnetic field using the
tangential electric field: z ̂ × H∥

[0] = Ywave(h)E∥
[0]. Here, the wave

admittance Ywave(h) is defined as the ratio of the tangential
magnetic field over the tangential electric field,46 before
introducing graphene to the system. Note that the wave
admittance includes the effect of the substrate and is generally a
space-variant complex value (see Supporting Information S2).
Thus, the expression for the optical force becomes h-
dependent:
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σ σ

=
| |
| |

*

=
| |
| |
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Y h
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z
[1] PEC

[0]
1

2

1
2 wave

PEC
[0]

1
2

1
2 wave

wave (3)

Note that in the phasor convention used in this paper,
[exp(iωt)], the imaginary part of both the surface conductivity
and the wave admittance is opposite those in the other
common convention, [exp(−iωt)]. Therefore, the force
expression given in eq 3 is independent of the convention used.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information includes (1) exact optical force
experienced by a graphene layer suspended on a substrate, (2)
wave admittance of the space above a substrate, (3) optical
properties of graphene, (4) temperature effect on optical forces,
(5) tunability of optical forces by Fermi level and free-carrier
scattering rate, and (6) comparison between optical forces and
electrostatic forces. This material is available free of charge via
the Internet at http://pubs.acs.org.
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